Domain adaptation for pedestrian detection based on prediction consistency.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Li-Ping Y, Huan-Ling T, Zhi-Yong A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2014</td>
</tr>
<tr>
<td>Volume</td>
<td>2014</td>
</tr>
<tr>
<td>Issue</td>
<td></td>
</tr>
<tr>
<td>Pages</td>
<td></td>
</tr>
</tbody>
</table>

Summary

It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. In Section 3, we present our method and parameters definition in detail.